Thursday, 10 August 2017

PH8252 PHYSICS FOR INFORMATION SCIENCE Syllabus Notes Question Bank

PH8252 PHYSICS FOR INFORMATION SCIENCE (Common To CSE & IT)  Lecture Notes Syllabus Book Previous  2 13 15 Marks  Anna University Important Question Bank With Answers Regulation 2017 Study Materials Pdf Ppt

PH8252 PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT)


UNIT I ELECTRICAL PROPERTIES OF MATERIALS
 Classical free electron theory - Expression for electrical conductivity – Thermal conductivity, expression - Wiedemann-Franz law – Success and failures - electrons in metals – Particle in a three dimensional box – degenerate states – Fermi- Dirac statistics – Density of energy states – Electron in periodic potential – Energy bands in solids – tight binding approximation - Electron effective mass – concept of hole.


UNIT II SEMICONDUCTOR PHYSICS
 Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors - Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – variation of Fermi level with temperature and impurity concentration – Carrier transport in Semiconductor: random motion, drift, mobility and diffusion – Hall effect and devices – Ohmic contacts – Schottky diode.


 UNIT III MAGNETIC PROPERTIES OF MATERIALS
 Magnetic dipole moment – atomic magnetic moments- magnetic permeability and susceptibility - Magnetic material classification: diamagnetism – paramagnetism – ferromagnetism – antiferromagnetism – ferrimagnetism – Ferromagnetism: origin and exchange interaction- saturation magnetization and Curie temperature – Domain Theory- M versus H behaviour – Hard and soft magnetic materials – examples and uses-– Magnetic principle in computer data storage – Magnetic hard disc (GMR sensor).


UNIT IV OPTICAL PROPERTIES OF MATERIALS
 Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.


UNIT V NANO DEVICES
 Electron density in bulk material – Size dependence of Fermi energy – Quantum confinement – Quantum structures – Density of states in quantum well, quantum wire and quantum dot structure - Band gap of nanomaterials – Tunneling: single electron phenomena and single electron transistor – Quantum dot laser. Conductivity of metallic nanowires – Ballistic transport – Quantum resistance and conductance – Carbon nanotubes: Properties and applications .


TEXT BOOKS:
1. Jasprit Singh, ―Semiconductor Devices: Basic Principles‖, Wiley 2012.
2. Kasap, S.O. ―Principles of Electronic Materials and Devices‖, McGraw-Hill Education, 2007.
3. Kittel, C. ―Introduction to Solid State Physics‖. Wiley, 2005.


REFERENCES
1. Garcia, N. & Damask, A. ―Physics for Computer Science Students‖. Springer-Verlag, 2012.
2. Hanson, G.W. ―Fundamentals of Nanoelectronics‖. Pearson Education, 2009.
3. Rogers, B., Adams, J. & Pennathur, S. ―Nanotechnology: Understanding Small Systems‖. CRC Press, 2014.

3 comments:

  1. PH8252 PHYSICS FOR INFORMATION SCIENCE Syllabus Notes Question Bank

    ReplyDelete
  2. PH8252 PHYSICS FOR INFORMATION SCIENCE Syllabus Notes Question Bank

    ReplyDelete
  3. PHYSICS FOR INFORMATION SCIENCE study materials pdf

    ReplyDelete